Skip to main content
Skip to navigation

George Smith

Curators’ Distinguished Professor Emeritus of Biological Sciences
PhD, 1970 Harvard University

Office: 406 Tucker Hall
Phone: Information not available
Additional: Website
Headshot of George Smith


Research summary

Molecular imaging of cancer through phage display

Research description

The University of Missouri is a world leader in the growing field of “molecular imaging,” which seeks to develop a new generation of agents for early detection and localization of cancers in the body. Molecular imaging differs from MRI, CAT scans, and other current imaging technologies in that the cancer cells are imaged specifically. This is accomplished by attaching a radioisotope to a molecule that binds specifically to the cancer cells and not to other tissues in the body. As an example, the picture shows a mouse into which human melanoma cells were grafted; the melanoma cells have formed a tumor at the mouse’s shoulder. A radioactive imaging agent specific for melanoma cancer cells was injected into the mouse, and a few hours later the mouse was imaged in two ways: by single photon emission computed tomography (SPECT) to detect the radioactivity (bright white area), and by a conventional CAT scan to delineate mostly the skeleton. The two images are superimposed; the superimposed image on the right is a computed section through the mouse at the line in the superimposed image on the left. You can see how the radioactive tumor-binding molecule allows the tumor to be seen much more easily than in the non-tumor-specific CAT scan. My lab’s role in the University’s molecular imaging program is to use the phage display technology developed by our group to discover novel tumor-binding molecules for common cancers, and to create easier, more powerful ways of using tumor-binding molecules for imaging.

Select Publications

Select Publications

Smith, G.P. Understanding Reversible Molecular Binding (2017) American Biology Teacher, 79 (9), pp. 746-752. DOI: 10.1525/abt.2017.79.9.746

Attai, H., Rimbey, J., Smith, G.P., Brown, P.J.B. Expression of a peptidoglycan hydrolase from lytic bacteriophages Atu_ph02 and Atu_ph03 triggers lysis of Agrobacterium tumefaciens (2017) Applied and Environmental Microbiology, 83 (23), art. no. e01498-17, DOI: 10.1128/AEM.01498-17

Smith, G.P., Golomb, M., Billstein, S.K., Smith, S.M. The Luria-Delbrück fluctuation test as a classroom investigation in Darwinian evolution. (2015) American Biology Teacher, 77 (8):614-619.

Smith, G.P. 2013. Chemical and proteolytic modification of antibodies. In Making and Using Antibodies: A Practical Handbook, Second Edition, Howard, G.C. and Kaser, M.R., eds. CRC Press, New York. pp. 207–274.

Thomas, W.D., and Smith, G.P. 2010. The case for trypsin release of affinity-selected phage. BioTechniques, in press.

Jin, X., Newton, J.R., Montgomery-Smith, S. and Smith, G.P. 2009. A generalized kinetic model for amine modification of proteins with application to phage display. BioTechniques 46, 175–182.

Smith, G.P., and Petrenko, V.A. 1997. Phage display. Chem. Rev. 97, 391–410.

Honors & Awards

Selected honors and awards

Nobel Prize in Chemistry 2018

Promega Biotechnology Research Award, America Society for Microbiology 2007

Elected Fellow - AAAS 2001

University of Missouri Curator’s Professor 2000