Skip to main content
Skip to navigation

Bing Zhang

Professor of Biological Sciences
PhD, 1995 Cornell University

Office: 102 Tucker Hall
Phone: 573-884-6482
Additional: Website
Headshot of Bing Zhang


Research summary

Genetic dissection of synaptic plasticity, neural circuitry, and behavior in fruit flies

Research description

We are recruiting postdocs, graduate and undergraduate students, and lab technicians.
Please contact Dr. Zhang,

The human brain is noted for its highly complex structures and diverse functions, ranging from sensory perception to creativity. Extensive synaptic connectivity among neurons forms various neural circuits, which are thought to be key to the brain’s power. Malfunction of synapses or degeneration of circuits, however, is often the first sign of nervous system disorders.

My laboratory uses the fruit fly (Drosophila melanogaster) as a genetic organism to study the basic as well as the clinical aspects of the brain. At basic levels, we study the cellular and molecular mechanisms by which synapses form, develop, and function. The general strategy that we employ is to derive the in vivo role of a gene based on phenotypic analysis of mutant flies. Besides molecular genetics, we also use cell biology, electrophysiology and biochemistry to examine the function of the gene product and its signaling pathways.

In addition, we use cutting-edge molecular genetic tools developed in my lab or elsewhere to map neural circuits underlying behaviors, with a goal to understand the neural substrate of behavior or misbehavior. A major focus in the lab now is to understand the contributions of glial cells (the other brain cells besides neurons) in neuronal circuitry formation and function.

To apply our skills and knowledge to understanding human diseases, we also use fruit flies to model neurological disorders, including Alzheimer’s, ALS, and Fragile-X syndrome. These studies have been valuable because the basic logics of brain structure and function and the biochemical pathways are relatively conserved from flies to humans.

Finally, my lab is interested in extending our genetic studies of the nervous system to a mammalian model organism (such as mouse). We believe this approach will further the understanding of shared mechanisms of neural development or diseases and facilitate therapeutic strategies for disease treatment.

Select Publications

Select Publications

Syed, A., Lukacsovich, T., Pomeroy, M., Bardwell, A.J., Decker, G.T., Waymire, K.G., Purcell, J., Huang, W., Gui, J., Padilla, E.M., Park, C., Paul, A., Pham, T.B.T., Rodriguez, Y., Wei, S., Worthge, S., Zebarjedi, R., Zhang, B., Bardwell, L., Marsh, J.L., MacGregor, G.R. Miles to go (mtgo) encodes FNDC3 proteins that interact with the chaperonin subunit CCT3 and are required for NMJ branching and growth in Drosophila (2019) Developmental Biology, 445 (1), pp. 37-53. DOI: 10.1016/j.ydbio.2018.10.016

M. Padash-Barmchi, M. Gilbert, M. Thomas, L. Banks, B. Zhang*, and Vanessa J. Auld* (2016). A Drosophila model of HPV E6-induced malignancy reveals essential roles for Magi and the insulin receptor. PLoS Pathogens 12(8):e1005789. doi: 10.1371/journal.ppat.1005789. *co-corresponding authors

Barmchi, M.P., Samarasekera, G., Gilbert, M., Auld, V.J., Zhang, B. Magi is associated with the par complex and functions antagonistically with bazooka to regulate the apical polarity complex (2016) PLoS ONE, 11 (4), art. no. e0153259, .DOI: 10.1371/journal.pone.0153259

Willenbrink, A.M., Gronauer, M.K., Toebben, L.F., Kick, D.R., Wells, M., Zhang, B. The Hillary Climber trumps manual testing: an automatic system for studying Drosophila climbing (2016) Journal of Neurogenetics, 30 (3-4), pp. 205-211. DOI: 10.1080/01677063.2016.1255211

O’Connor-Giles, K.M., Zhang, B., Simpson, J.H., Wu, C.-F. The neurogenetics of Drosophila: the Ganetzky legacy (2016) Journal of Neurogenetics, 30 (3-4), pp. 149-151. DOI: 10.1080/01677063.2016.1254629

Y.J. Kim, O. Igiesuorobo, C.I. Ramos, H. Bao, B. Zhang, and M. Serpe (2015). Prodomain removal enables neto to stabilize glutamate receptors at the Drosophila neuromuscular junction. PLoS Genetics 11:1-26.

B.N. Smith, A.M. Ghazanfari, R.A. Bohm, W.P. Welch, B. Zhang, and J.P. Masly (2015). A flippase-mediated GAL80/GAL4 intersectional resource for dissecting appendage development in Drosophila. G3: Genes, Genomes, Genetics 5:2105-2112.

L. Sivanantharajah and B. Zhang (2015). Current techniques for high-resolution mapping of behavioral circuits in Drosophila. J Comp Physiol A 201: 895-909.

C. M. Loya, E. M. McNeill, H. Bao, B. Zhang, and D. Van Vactor (2014). MiR-8 controls synapse structure by repression of the actin regulatorenabled. Development 141(9):1864-74.

P. A. Vanlandingham, M. Padash-Barmchi, S. Royer, R. Green, H. Bao, N. Reist and B. Zhang (2014). AP180 couples protein retrieval to clathrin-mediated endocytosis of synaptic vesicles. Traffic 5: 433-50.

T. Fore and B. Zhang (2014). Intersectional strategies for cell type specific expression and transsynaptic labeling. In: J. Dubnau (Ed.), Behavioral Genetics of the Fly (Drosophila melanogaster) (pp. 250-267). Cambridge: Cambridge University Press. (ISBN: 9781107009035)

P. Huang, P. Sahai-Hernandez, R.A. Bohm, W.P. Welch, B. Zhang, T. Nystul. (2014) Enhancer-trap flippase lines for clonal analysis in the Drosophila ovary. G3: Genes, Genomes, Genetics 4, 1693-1699.

B. Kottler, H. Bao, O. Zalucki, W. Imlach, M. Troup, B. van Alphen, A. Paulk, B. Zhang and B. van Swinderen (2013). A sleep/wake circuit controls isoflurane sensitivity in Drosophila. Current Biology 23:594-598.

E. L. Kumimoto, T. R. Fore, and B. Zhang (2013). Transcriptome profiling following neuronal and glial expression of ALS-linked SOD1 in Drosophila. G3: Genes Genomes and Genetics. 3: 695-708.

P.A. Vanlandingham, T.R. Fore, L.R. Chastain, S.M. Royer, H. Bao, N.E. Reist, and B. Zhang (2013). Epsin 1 promotes synaptic growth by enhancing BMP signal levels in motoneuron nuclei. PLoS One 8(6): e65997.

P. A. Vanlandingham*, T.R. Fore, L. R. Chastain*, S. M. Royer, H. Bao, N. E. Reist, and B. Zhang (2013). Epsin 1 promotes synaptic growth by enhancing BMP signal levels in motoneuron nuclei. PLoS One 8(6): e65997. doi:10.1371/journal.pone.0065997

E. L. Kumimoto, T. R. Fore, and B. Zhang (2013). Transcriptome profiling following neuronal and glial expression of ALS-linked SOD1 in Drosophila. G3: Genes Genomes and Genetics. 3: 695-708.

K. Koles, J. Nunnari, C. Korkut, R. Barria, C. Brewer, Yihang Li, J. Leszyk, B. Zhang and V. Budnik (2012). Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem 287:16820-34.

Y-J Kim, H. Bao, L. Bonanno, B. Zhang and M. Serpe (2012). Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Genes and Development, 26: 974-987. [Featured on the cover]

R. Islam, E.L. Kumimoto, H. Bao and B. Zhang (2012). ALS-linked SOD1 in glial cells enhances ß-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila [v1; ref status: indexed,] F1000Research 1:47 (doi: 10.3410/f1000research.1-47.v1)

T. R. Fore, A. A. Ojwang, M. L. Warner, X.Y. Peng, C. A. Springer, R. A. Bohm, W. P. Welch, L. K. Goodnight, H. Bao, and B. Zhang (2011). Mapping and application of enhancer-trap flippase expression in larval and adult Drosophila CNS. J Vis Exp. 52

E. F. Ozdowski, S. Gayle, H. Bao, B. Zhang, N. T. Sherwood (2011). Loss of p21- activated kinase3 (pak3) suppresses defects in synapse structure and function caused by spastin mutations. Genetics, 189: 123-35.

J. M. Tauber, P. A. Vanlandingham, and B. Zhang (2011). Elevated levels of the vesicular monoamine transporter and a novel repetitive behavior in the Drosophila model of fragile X syndrome. PLoS One, 6(11): e27100.

B. Zhang, M.R. Freeman, and S. Waddell (2010). Drosophila Neurobiology: A Laboratory Manual. Cold Spring Harbor Laboratory Press. eds.

R.A. Bohm, W.P. Welch, L.K. Goodnight, L.W. Cox, L.G. Henry, T.C. Gunter, H. Bao, and B. Zhang (2010). A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A. 107:16378-16383. [Featured on the cover]

A. Chai, J. Withers, Y. H. Koh, K. Parry, H. Bao, B. Zhang, V. Budnik, G. Pennetta (2008). hVAPB, the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the Neuromuscular Junction. Human Molecular Genetics 17: 266-80

M. R. Watson, R. D. Lagow, K. Xu, B. Zhang, and N. M. Bonini (2008). A Drosophila model for SOD-linked amyotrophic lateral sclerosis reveals motor neuron damage by SOD1. JBC. 283: 24972-81. [Selected as a Paper of the Week and featured on the cover]]

H. Bao, N. Reist, and B. Zhang (2008). The Drosophila Epsin 1 Is Required for Ubiquitin-dependent Synaptic Growth and Function, But Not for Synaptic Vesicle Recycling. Traffic 9: 2190-2205

V. G. Martinez, C. S. Javadi, E. Ngo, L. Ngo, R.D. Lagow, and B. Zhang (2007). Age-related changes in climbing behavior and neural circuit physiology in Drosophila. Dev. Neurobiol. 67: 778-791.

H. Bao, M. Berlanga, M. S. Xue, S. Hapip, R. W. Daniels, J. M. Mendenhall, A. Alcantara, and B. Zhang (2007). The atypical cadherin /receptor Flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Molecular and Cellular Neuroscience, 34: 662-678. [Featured on the cover].

R. D. Lagow, H. Bao, E. N. Cohen, R. W. Daniels, W. H. Williams, G. T. Macleod, R. B. Sutton, and B. Zhang (2007). Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion. PLoS Biol, 5(4): e72. DOI:10.1371. page 0800-0817.

G. Marqués and B. Zhang (2006). Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction. In: The Fly Neuromuscular Junction: Structure and Function. Second edition. Edited by Vivian Budnik and Catalina Ruiz-Canada. Academic Press. Invited book chapter. Pp. 268-285.

H. Bao, R. W. Daniels, G. T. Macleod, M. P. Charlton, H. L. Atwood, and B. Zhang (2005). AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis. Journal Neurophysiology, 94, 1888-1903

N. T. Sherwood, Q. Sun, M. Xue, B. Zhang, and K. Zinn (2004). Drosophila Spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol. 2:2094-2111.

G. Marqués, T. E. Haerry, M. L. Crotty, M. Xue, B. Zhang and M. B. O’Connor (2003). Retrograde Gbb signaling through the BMP type II receptor Wishful Thinking regulates systemic FMRFa expression in Drosophila. Development 130: 5457-5470.

X. Chen, B. Zhang, J. A. Fischer (2002). A specific protein substrate for a deubiquitinating enzyme: liquid facets is the substrate of Fat facets. Genes and Development 16: 289-294.

G. Marques, H. Bao, T. Haerry, P. Duchek, M. J. Shimell, B. Zhang, and M. B. O’Connor (2002). The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529-543.

Y. Mao, J. Chen, J. A. Maynard, B. Zhang, and F. A. Quiocho (2001). A novel all helix fold of the AP180 amino-terminal domain for phosphoinositide binding and clathrin assembly in synaptic vesicle endocytosis. Cell 104: 433-440.

A. Zelhof, H. Bao, R. W. Hardy, A. Razzaq, B. Zhang, and C. Q. Doe (2001). Drosophila Amphiphysin is implicated in protein localization and membrane morphogenesis but not in endocytosis of synaptic vesicles. Development 128: 5005-5015.

Honors & Awards

Selected honors and awards

Richard F. and Sharon A. Keister Faculty Enhancement Award in Biological Sciences 2017

Faculty Fellow, College of Arts and Science 2015

Midwest Representative, Fly Board, Genetics Society of America 2014